Разделение токов в этих контурах в режиме торможения происходит разделительным диодом VD3. ТЭД в этом режиме работает как генератор с параллельным возбуждением.
Сочетание последовательного и параллельного возбуждения ТЭД, работающего в режиме генератора, позволяет улучшить процесс торможения и уравнивать ток обмотки возбуждения и ток якоря. При высоких скоростях движения ток обмотки возбуждения меньше тока якоря и при этом в основном применяется параллельное возбуждение. При низких скоростях движения ток обмотки возбуждения плавно возрастает до значения, превышающего ток якоря, в этом диапазоне скоростей в основном применяется последовательное возбуждение. Соотношение продолжительности работы в режимах последовательного и параллельного возбуждения задается законом управления ТИР.
Принцип тиристорно-импульсного регулирования
В данной системе привода используется тиристорное регулирование напряжения на якоре двигателя. Сущность его заключается в периодическом открывании и закрывании ключевого элемента – тиристора на высокой частоте.
Ввиду необходимости получения широкого диапазона регулирования напряжения применяется сочетание частотной и широтной модуляции.
В начале регулирования, когда для выбора зазоров в механической передаче необходимо получить выходное напряжение более 5 В, реализуется минимальная длительность включения основного тиристора (tвкл = 200 мкс), частота коммутации при этом fком = 25…30 Гц (рисунок 8.1а).
При увеличении задания тока происходит увеличение частоты модуляции при неизменной (минимальной) продолжительности включения основного тиристора (рисунок 8.1б). В режиме fном = 400 Гц; tн = 200 мкс, среднее напряжение составляет не более 10% от входного.
При дальнейшем увеличении задания тока происходит широтная модуляция, то есть увеличивается длительность открытого состояния тиристора по отношению к неизменному периоду коммутации. При этом увеличивается среднее напряжение на якоре двигателя, происходит разгон привода (рисунок 8.1в). Максимальное напряжение в режиме широтной модуляции ограничивается временем коммутации, которое нельзя бесконечно уменьшать. Поэтому среднее выходное напряжение в этом случае составляет примерно 84% (рисунок 8.1г). Переход в этом режиме на полное открытие основного тиристора вызовет бросок тока и толчок привода.
При дальнейшем увеличении напряжения управления происходит снижение частоты модуляции с 400 Гц до 25‑30 Гц (рисунок 3.1 д). При этом среднее напряжение на выходе преобразователя составляет около 96% от напряжения контактной сети, и поэтому можно переходить на полное открытие тиристора без существенного броска тока.
При дальнейшем увеличении напряжения происходит снятие импульсов с коммутирующего тиристора и полное открытие ключевого элемента – к якорю двигателя прикладывается полное напряжение контактной сети (рисунок 8.1 е).
По данным таблицы 4.2 строим графики переходных процессов выбранной схемы (Рис. 4.1 – 4.8).
Статьи о транспорте:
Сколько автомобилей следует держать на складе
В первую очередь это зависит от выбранной марки производителя. Если он предлагает широкую линейку моделей, то дилеру, соответственно, приходится держать на складе много машин, и наоборот. Практика показывает, что на складе дилера в любой момент времени должно находиться автомобилей в 2 раза больше ...
Выбор оптимального
программного обеспечения
Произведя мониторинг программного обеспечения, сведем полученные данные в таблицу 6 для более упрощенного анализа с целью выбора самого оптимального варианта, который бы отвечал всем необходимым запросам компании.
Таблица 8
Определение функционала программного обеспечения
Наименование функци ...
Характеристика уровня удобства движения
Для оценки уровня удобства движения определяется пропускная способность и коэффициент загрузки дороги движением, по назначению которого определяется соответствующий уровень удобства.
Пропускная способность дорог определяется по формуле:
(7)
где Рmax – максимальная пропускная способность легков ...