где Свозд. - средняя удельная теплоемкость воздуха, ;
rвозд .- плотность воздуха,
Dtвозд. - температурный перепад в решетке радиатора,
Циркуляционный расход охлаждающей жидкости через радиатор [2]:
, (6.321)
где СЖ - удельная теплоемкость охлаждающей жидкости, ;
rЖ - плотность охлаждающей жидкости, ;
DtЖ - температурный перепад охлаждающей жидкости в радиаторе, .
Средняя температура жидкости в радиаторе [2]:
, (6.322)
где tж.вх. - температура охлаждающей жидкости на входе в радиатор: tж.вх.=90°С.
Средняя температура воздуха, проходящего через радиатор [2]:
, (6.323)
где tвозд.вх. - температура воздуха на входе в радиатор, tвозд.ср.=40°С.
Необходимая площадь поверхности охлаждения радиатора [2]:
, (6.324)
где kж - коэффициент теплоотдачи от охлаждающей жидкости в стенки радиатора, kж=80…100 . Принимаем 90
Площадь фронтовой поверхности радиатора [2]:
, (6.325)
где vвозд.- скорость воздуха перед фронтом радиатора, vвозд.=13 м/с.
Глубина сердцевины радиатора [2]:
, (6.326)
где jР - коэффициент объемной компактности, jР=0,11.
Расчет вентилятора
Окружная скорость лопасти вентилятора на ее наружном диаметре [2]:
, (6.327)
где y - коэффициент, зависящий от формы лопастей, y=2,2…2,9;
pв - давление воздуха создаваемое вентилятором, pв=600…1000 МПа;
r =1,093 -плотность воздуха при средней его температуре в радиаторе
Для расчета принимаем y=2,3, pв=900 МПа.
Диаметр вентилятора [2]:
, (6.328)
где v¢возд.- расчетная скорость воздуха в рабочем колесе, v¢возд.=20 м/с.
По ГОСТ 10616-73 принимаем
Частота вращения вала вентилятора [2]:
(6.329)
Мощность, потребляемая для привода вентилятора:
, (6.330)
где hв - КПД вентилятора, hв=0,7.
Расчет водяного насоса
Расчетная подача водяного насоса:
, (6.331)
где hН-коэффициент подачи, учитывающий возможность утечки жидкости, hН=0,85.
Рисунок 6.114 – Расчетная схема водяного насоса
Радиус входного отверстия крыльчатки [2]:
, (6.332)
где С1-скорость жидкости на входе в насос (1 2,5),С1=1,8м/с;
r0-радиус ступицы крыльчатки, r0=30 мм.
Окружная скорость схода жидкости [2]:
, (6.333)
где a2,b2-углы между направлениями скоростей,a2=10°,b2=45°;
рж .- давление жидкости, создаваемое насосом, рж.=9×10 4МПа;
hГ - гидравлический КПД насоса, hГ=0,67.
Радиус крыльчатки на выходе [2]:
. (6.334)
Окружная скорость потока жидкости на входе [2]:
; (6.335)
;
b=15°.
Радиальная скорость схода охлаждающей жидкости [2]:
(6.336)
Число лопастей на крыльчатке z=6,
Толщина лопасти б=3мм;
Толщина лопастей на входе b1 и выходе b2 [2]:
; (6.337)
. (6.338)
Мощность, потребляемая водяным насосом [2]:
; (6.339)
Статьи о транспорте:
Определение геометрических и массовых характеристик самолета
Так как расчет нагрузок крыла будет производиться при помощи программы NAGRUZ.exe, нам понадобятся некоторые данные касающиеся геометрии и массы самолета.
Длина: 8,25 м
Размах крыла: 10,2 м
Высота: 3,325 м
Площадь крыла: 17,44 м²
Профиль крыла: Кларк YH
Коэффициент удлинения крыла: 5,97 ...
Выбор рабочей жидкости
От правильности выбора рабочей жидкости зависят работоспособность гидропривода и долговечность гидрооборудования. Марку масла выбирают исходя из условий эксплуатации, типа насоса и ответственности гидросистемы. Чем ниже температура окружающего воздуха, тем менее вязкую жидкость следует выбирать, и ...
Альтернативные виды топлива
Один из путей повышения эффективности работы газотурбинных двигателей на железнодорожном транспорте — применение альтернативных топлив. Газотурбинные двигатели идеально подходят для использования в качестве топлива сжиженного или сжатого природного газа, а также метанола. При этом не требуются как ...