Феррографический анализ масла был предложен В. Весткоттом, Д. Андерсоном, Р. Боуэном. Он заключается в осаждении частиц износа из пробы масла в магнитном поле на поверхности стеклянной пластины с последующим их анализом на микроскопе. Частицы с одинаковыми магнитными свойствами осаждаются на пластину в соответствии с их размером: сначала крупные, затем более мелкие. Частицы одинакового размера, но с различными магнитными свойствами осаждаются в соответствии с их магнитной восприимчивостью.
Феррографический способ анализа, в отличии от спектрального, предоставляет значительно больше информации о частицах износа. Данным способом представляется возможность оценить размер, индекс износа, форму и состояние поверхности частиц, которая позволяет идентифицировать вид износа.
Казалось бы, при таком количестве информации об износных частицах должны отсутствовать промахи в оценке технического состояния двигателей. Однако на практике не всегда удаётся поставить точный диагноз.
Несмотря на длительное применение спектрального и феррографического метода (более 25 лет), в трибодиагностике газотурбинных двигателей остаются существенные проблемы. Так, по данным НПО «Сатурн», спектральный анализ выявляет не более 11% двигателей Д-30КП / КУ / КУ-154 с дефектами маслосистемы. В ОАО «Авиадвигатель» по результатам спектральных и феррографических измерений ни разу не удалось предотвратить дефекты подшипников трансмиссии в двигателях ПС-90А.
Повысить эффективность диагностирования при спектральном анализе можно прежде всего за счёт снижения случайной составляющей погрешности при измерении содержания металлической примеси в масле. Для этого предлагается использовать стандартный образец (СО): для атомно-эмиссионных спектрометров – на основе маслорастворимой металлоорганической примеси (СО фирмы Conostan), для рентгенофлуоресцентной аппаратуры – на основе водного раствора ионов металлов либо чистых металлов.
Однако имеющийся фактический материал заставляет сомневаться в справедливости отмеченных выше основополагающих признаков оценки технического состояния ГТД. Поэтому необходимо выявить основные причины низкой эффективности диагностирования ГТД спектральным и феррографическим методом, чтобы сформулировать затем возможные пути решения проблемы.
Атомно-эмиссионный способ измерения элементного состава вещества является относительным, и для количественного измерения содержания элементов он должен быть отградуирован с помощью стандартного образца (СО). Основным требованием, предъявляемым к СО, является его максимально близкое (в идеале – полное) соответствие по физико-химическим характеристикам анализируемой пробе.
Следует отметить, что в анализируемых пробах масел металлы находятся в виде частиц износа, размер которых может меняться. А градуирование анализатора производится по стандартному образцу, где металлы содержаться в виде маслорастворимой металлической примеси (СО Conostan) или частиц фиксированного размера (СО, содержащий частицы окиси Fe и Cu). Таким образом, форма содержания металла в стандартном образце и в анализируемой пробе – различная.
В связи с этим возникают вопросы, насколько существенна систематическая погрешность при измерении содержания частиц с применением стандартного образца и повысится ли эффективность диагностирования ГТД при внедрении СО.
Как правило, у исправных двигателей в пробе масла отсутствуют частицы размером более 3 мкм (обычно 0,05…0,8 мкм). Исходя из этого для изготовления стандартного образца рекомендуется перетирать окислы металлов не менее 3 часов, в результате чего частицы размером до 5 мкм составят 99,5%. Таким образом, стандартный образец будет близок к размерам частиц износа в анализируемой пробе.
С другой стороны, были выделены частицы износа из масла исправных двигателей Д-30КП / КУ-154, размер и другие параметры которых оценивались с помощью микрорентгеноспектрального анализатора Camebax – SX-50. Оказалось, что в смазочном масле исправного двигателя могут находиться частицы размером до 50 мкм (табл. 3).
Таблица 3
Распределение по размерам частиц железа, полученных осаждением из смазочного масла исправных двигателей. Количество частиц Fe в выборке 193
d, мкм |
2 |
3 |
4 |
5 |
6 |
8 |
10 |
15 |
20 |
30 |
40 |
50 |
n, число частиц |
37 |
26 |
17 |
20 |
16 |
15 |
19 |
15 |
8 |
4 |
4 |
12 |
N, % |
19,2 |
13,5 |
8,8 |
10,3 |
8,3 |
7,8 |
9,8 |
7,8 |
4,1 |
2,1 |
2,1 |
6,2 |
Статьи о транспорте:
Условия проведения проверки технического состояния тормозного управления
АТС подвергают проверке при «холодных» тормозных механизмах. «Холодный» тормозной механизм - тормозной механизм, температура которого, измеренная на поверхности трения тормозного барабана или тормозного диска, менее 100 °С.
Шины проверяемого на стенде АТС должны быть чистыми, сухими, а давление в ...
Определение расхода материалов на устройство дорожной одежды
Потребности в материале определяются на основании конструктивного поперечного профиля по каждому конструктивному слою дорожной одежды с использованием норм [7].
Объем материала дополнительного слоя из песка, исходя из очертаний
поперечного профиля дорожной одежды, рассчитаем по формуле
, (58)
...
Расчет остойчивости формы и построение интерполяционных кривых
Плечи остойчивости формы можно определить аналитическим путем или графически по известным значением метацентрическим радиусам.
При аналитическом расчете используется соотношение:
-где
;
.
Расчет производится в таблицах 6.1 ÷ 6.4 и (рис.6.1 и 6.2) по правилам вычисления интеграла с пере ...