Чтобы учесть все напряжения изгиба в штоке амортизатора, следует рассматривать действия боковых сил от поперечных составляющих неровностей дороги при крайнем нижнем положении колеса (рис. 5.11). При этом ограничитель хода отбоя, закрепленный на штоке амортизатора, упирается в направляющую втулку штока в зоне точки С.
Определяем угол β4:
Рис. 5.11 Изменение положения рычага при полном ходе отбоя
; β4=19º
Определение углов наклона оси поворота δ4 и развала колеса γ4.
В этом случае не будем пренебрегать изменением угла α между осью поворота и осью амортизатора, как это было сделано в случае максимальной вертикальной нагрузки (случай 2 п.5.3.4) из-за ничтожного его изменения в сравнении с изменением угла δo → δ2. Так как очень сложно учесть все факторы, влияющие на изменение развала γ, то единственными критериями оценки изменения угла α можно считать кратчайшее расстояние от центра шаровой опоры до оси амортизатора и угол δo – α = 8° между осью колеса и осью амортизатора, которые неизменны при любом положении подвески.
Угол δ4 определяем графически с учетом масштаба по рис. 5.12 через соотношение:
соs δ4 = j/q = 0,671 /0,685 = 0,9796,
что соответствует δ4 = 11°36′.
Аналогично определяем угол α4 :
sinα4= t/q= 0,045 / 0,685 = 0,0571, α4 ≈ 3°44′.
Находим развал при полном ходе отбоя:
g4=(d4-a4)-(d0-a)=(11°36¢-3°44¢)-(15°-7°)= -0,08¢.
Составляем уравнение моментов относительно т.А:
SМА:S1[d+fm+(c+o)cosd0+f2]+BX4[(c+o)cos d0+f2]-
-BY4[(c+o)cos d0+f2]sin d4/cosd4=0
Учитывая, что BX4=BY4∙Ctg b4 и sin d4/cos d4=tg d4:
BX4= -469,96∙2,904= -1364,76 H.
Силы в точке А:
-Aх4+Bх4+S1=0; -Aу4+Bу4=0;
Aх4=Bх4+S1; Aу4=Bу4;
Aх4= -1364,76+981= -383,76 H; Aу4= -469,96 H.
Aуt=Aу4∙cos (d4-a4)= -469,96∙0,9979= -468,97 H.
Aуs=Aу4∙sin (d4-a4)= -469,96∙0,0651= -30,59 H.
Aхt=Aх4∙sin (d4-a4)= -383,76∙0,0651= -24,98 H.
Aхs=Aх4∙cos(d4-a4)= -383,76∙0,9979= -382,95 H.
As=Aхs–Aуs= -382,95–(-30,59)= -352,36 H.
At=Aуt+Aхt= -468,97+(-24,98)= -493,95 H.
Рис. 5.12 Схема сил в подвеске при полном ходе отбоя.
Рис. 5.13 Силы действующие на шток амортизатора при полном ходе отбоя.
Проверка:
606,74»606,75.
O¢4=O¢+f2/ix=0,136+0,085/1,0112=0,2186 м.
Сила в направляющей втулке амортизаторной стойки:
C4=AS∙l¢/(l¢-O¢4)= -352,36∙0,347/(0,347- -0,2186) = -952,25 H.
Сила, действующая на поршень:
K4=C4-AS= -952,25–(-352,36)= -599,89 H.
Момент, изгибающий шток:
MK4=AS∙O¢4= -352,36∙0,2186= -77,03 Hм.
Т. к. изгибающий момент для этого случая меньше всех рассчитанных раньше моментов, то условие прочности выполняется.
Окончательно имеем диаметр штока амортизаторной стойки d=20 mm.
Статьи о транспорте:
Дизельная тяга
Дизелевоз - подземный локомотив, оснащенный дизельным двигателем, снабженный специальными катализаторами и фильтрами для очистки выхлопных газов от окиси углерода и токсических продуктов сгорания рабочей смеси, предназначенный для рельсовой транспортировки людей и грузов в шахтах, а также при стро ...
Расчет продолжительности грузовых операций
Расчёт продолжительности грузовых операций произвожу с учётом наличия погрузочно-разгрузочных машин на грузовом пункте, их производительности и массы груза в вагонах, поданных под грузовые операции, норм времени на грузовые операции с одним вагоном механизированным способом. По условиям техники бе ...
Работа системы впрыска топлива автомобиля ВАЗ 21213
Количество топлива, подаваемого форсункой, регулируется электрическим импульсным сигналом от электронного блока управления (ЭБУ). ЭБУ отслеживает данные о состоянии двигателя, рассчитывает потребность в топливе и определяет необходимую длительность подачи топлива форсункой (длительность импульса). ...